
Multi-Step Planning for Robotic Manipulation

Max Pflueger and Gaurav S. Sukhatme

Abstract— Most current systems capable of robotic object
manipulation involve ad hoc assumptions about the order of
operations necessary to achieve a task, and usually have no
mechanism to predict how earlier decisions will affect the
quality of the solution later. Solving this problem is sometimes
referred to as combined task and motion planning. We propose
that multi-step planning, a technique previously applied in some
other domains, is an effective way to address the question
of combined task and motion planning. We demonstrate the
technique on a complex motion planning problem involving
a two-armed robot (PR2) and an articulated object (folding
chair) where our planner naturally discovers extra steps that
are necessary to satisfy kinematic constraints of the problem.
We also propose some further extensions to our algorithm that
we believe will make it an extremely powerful technique in this
domain.

I. INTRODUCTION

Robots with the ability to modify their environment in
unstructured settings form one of the most exciting new
frontiers in robotics. For the past two decades, an explosion
of low cost sensing has led to advances in robotics in
mapping, navigation, and perception. This, in turn, raises
the possibility of practical problems of autonomous robots
physically interacting with their environment. This is the
problem of robotic manipulation in unstructured settings.

When thinking about practical robotic manipulation we
are almost always dealing with 6 or 7 degree-of-freedom
robot arms, mounted on a mobile base. These arms have
complex kinematics that make analytic solutions to collision
checking problems near impossible. Consequently, sampling-
based planning algorithms are used to develop collision free
trajectories. These planning algorithms have advanced to a
point where ’off the shelf’ algorithms exist that can produce
practical, collision free, motion plans for many arms in
diverse circumstances [2]. However, they leave something to
be desired when we think about the objectives we actually
care about in robotic manipulation problems.

Traditional robotic motion planning problems focus on the
state of the robot. A more useful (though more difficult)
problem formulation would specify goal conditions in terms
of the state of the environment. To wit, in many useful
problems, the state of the robot is not intrinsically important.
If we wish to move a bowl on a table by using a robot,
we care that the bowl gets to where we want it. Usually
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Fig. 1. PR2 robot in the process of folding a chair.

(as long as the robot doesn’t get in our way or run into
anything) we don’t care where the robot goes to do achieve
the goal. Combined task and motion planning refers to
planning through a combination of the task space (the state
of the environment) and the motion of the robot.

Although it may seem like a simple matter of adding
more degrees of freedom, combined task and motion plan-
ning problems are significantly different from the problems
usually encountered in robotic motion planning. Holonomic
robots are those that are capable of instantaneously moving
in any free direction (such as a ground robot with omni-
wheels, or a robot arm in joint space). Planning is easier
for holonomic robots because it is easy to develop a local
algorithm to move the robot from one waypoint to another.
Planning for non-holonomic robots is more difficult because
of restrictions in how waypoints can be connected (requiring
a more sophisticated local planner).

This problem is particularly acute for the types of spaces
encountered in combined task and motion planning. In most
traditional non-holonomic spaces it is possible to get to any
nearby position in a small amount of time. For example a
differential drive robot can use a forward and back motion to
slide to the side a small distance in a relatively small amount
of time.

In contrast, combined task and motion planning problems
do not have this property, as the state of the objects in the
environment cannot be changed until the robot is in a proper
position to interact with them. Indeed, if we wish to move
a bowl a very small distance on a table, but our robot is on
the other side of the room, the start and goal states may be
very close to each other, but the plan to go from start to goal
may be very long.

Some previous approaches to combined task and motion
planning have relied either on a hand engineered plan outline
[3], or have incorporated task planners at the top level
(with varying degrees of specialization) [4]. We discuss these
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approaches in some more detail in our Related Work section.
Our design relies on a simple discrete state planner at the
top level.

The multi-step planning process involves combining a
discrete planner with a continuous planner, where the con-
tinuous planner provides information on the feasibility of
discrete steps. The discrete steps correspond to qualitative
changes in the nature of the environment, in our case that
means points where the robot either grasps or releases an
object. Depending on what the robot is holding on to,
a continuous planner will be selected that is capable of
planning in that situation.

The main contribution of this paper is to introduce multi-
step planning as a framework for solving combined task and
motion planning problems, and demonstrate its application
on a non-trivial planning task. We have implemented a
demonstration of this approach for the problem of manip-
ulating an articulated object, in this case a folding chair.
This problem is in some ways easier that other multi-step
problems (only one degree of freedom outside the robot),
but also demonstrates the power of this approach by showing
how it can integrate a specialized planning algorithm in some
steps of the plan where it is necessary (two arm manipulation
of the articulated object), while also using more simple
planning algorithms when the robot is differently constrained
(standard sampling based planners for free arms).

One exciting aspect of our approach is that is relies
on a well studied and well understood class of discrete
search algorithms. Currently we rely on a simple breadth
first search, which allows us to achieve good results on our
problem. Development of a good admissable heuristic could
significantly improve performance through heuristic search
algorithms such as A*, and could open possibilities to much
more complex planning problems. This is an ongoing area
of research for us.

II. RELATED WORK

A. Continuous Space Planners

Motion planning problems for modern, high degree-of-
freedom robots, such as arms and mobile manipulators, are
most frequently solved using one of a group of sampling
based motion planning algorithms. This includes techniques
such as probabilistic road maps [5] and RRTs [6].

RRTs in particular are well suited to the well behaved non-
holonomic problems often encountered in robot navigation
(discussed earlier), and many variants have been proposed,
including RRT* [7], RRT-connect [8] and others. However,
RRTs rely on a notion of locality that works well in these
well behaved spaces (specifically, a meaningful distance
metric for finding nearest nodes), but tends to break down
in manipulation problems such as the type we address with
multi-step planning and other combined task and motion
planners.

B. Object Perception and Manipulation

Outside of simulated or highly structured environments,
any manipulation planning system relies on some form of

sensing and perception to detect the presence and position
of the objects with which to interact. Our system relies on
fiducial markers and knowledge of the structure of the object.
At a practical level it can be difficult to supply structured
information about articulated objects when a CAD model is
not handy. Sturm et. al. studied ways to model and learn
the configuration of articulated objects [9]. Katz et. al. have
done similar work using a robot to interact with the scene
and detect articulated structure [10].

C. Combined Task and Motion Planning

Multi-step planning has been used before in some other
specialized applications, Bretl et. al. [11] used it to plan
a path for a wall climbing robot. In their experiment a
robot climbs a wall using rock climbing holds similar to
what would be seen in a rock climbing gym. In this context
the discrete states represented the set of holds the robot is
currently using to attach to the wall, and state transitions
have to account for whether the robot can reach a new hold
without falling off the wall. Hauser et. al. [12] demonstrated
an application of machine learning to improve the efficiency
of the multi-step planner for the same robot.

Some recent work has started to look at ways of solving
the combined task and motion planning problem using other
techniques. Nedunuri et. al. [3] developed an approach that
relied on plan outlines supplied by an expert. In work that is
probably most directly comparable to our own, Srivastava
et. al. [4] developed a planner based on a new interface
layer between known motion planning algorithms and known
PDDL based task planning algorithms. In contrast, our work
does not use specialized task planners, but instead divides
the world state into qualitative classes based on the nature
of the robot’s interaction with the environment, and asks the
programmer to provide motion planners that are valid in each
class of world states. In a practical sense, this requirement
would exist with any attempt at combined task and motion
planning; our formulation allows us to provide planners
for specialized situations such as two hand manipulations
of articulated objects, a task space that has not, to our
knowledge, been demonstrated elsewhere in a combined task
and motion planning setting.

III. PROBLEM FORMULATION

A. General Problem

The full planning space of the problem combines the full
pose of the robot along with the poses of all objects in the
scene. Planning in that space in a raw form would normally
be very difficult due to the high dimensionality of the space,
and the need to model state transitions that take into account
the physical interaction of objects. We simplify this space by
assuming that the scene (non-actuated degrees of freedom)
is fixed, and only moved under special circumstances. In
this case, objects in the scene only move when the robot is
holding on to them.

This forms the notion of qualitative classes of the world
state we mentioned earlier, we call the configuration of the
robot’s end effectors on the world the stance of the robot.



Fig. 2. Initial conditions for a 1D toy world, with a robot on the left, and
cart on the right.

Fig. 3. Final conditions for the 1D toy world.

In a mathematical sense, a stance can be thought of as a set
of manifolds through the configuration space, where on any
individual manifold we have a functional continuous planner.

The multi-step planning problem then becomes one of
finding at the discrete level a sequence of stance transitions
in the state space, and at the continuous level a valid plan
across each manifold connecting the transition points.

A limitation of this approach is that it does not directly
model the physics of objects in the world. For example, if
the robot deposits a small tabletop object into a location in
free space, the object tends to fall to the ground (Robonaut
[13] will be allowed to disagree). This can be fixed with
a constraint that objects may only be released in stable
positions, but it requires the programmer to codify these
stable positions.

B. A Toy Problem

The need for this solution approach is easy to demonstrate
by a simple, 2D toy problem. Consider a robot and object
in a 1 dimensional world, such as Fig. 2. Suppose we wish
to achieve a final state as in Fig. 3. To visualize a plan we
can see the whole state space represented in 2D in Fig. 4.

We observe that since the cart is not actuated, only certain
forms of motion in the state space are possible. A plan must
either move along the diagonal line, as when the robot is
attached to the cart, or it must move vertically under the
diagonal line, as when the robot is unattached. We note that
most easy notions of locality or distance metrics break down
in this problem as two states may be very close, if the cart

Fig. 4. The full 2D state space for the 1D toy world. Note that motion is
only possible along the diagonal line (robot holding the cart) or vertically
under the diagonal line (robot unattached to the cart).

is near its goal position, but if the robot is not nearby, the
actual manipulation distance may be much larger.

For this toy problem it is easy to see how to find a
solution: travel up to the diagonal line (grab the cart), traverse
the diagonal line until vertically aligned with the goal state
(move the cart to its goal position), then move vertically
down to the goal state (release the cart and move the robot
to its own goal position). Of course, this is an ad hoc solution
that would only work for this particular problem, below
we describe the multi-step planning algorithm for finding
solutions in these sorts of spaces.

IV. ALGORITHM

Multi-step planning is, fundamentally, a layering of a
discrete search algorithm, in this case breadth-first search,
on top of specialized continuous planners. Algorithm 1 lists
the basic algorithm for multi-step planning as the getPlan
function.

We consider the full state of our world to include all
degrees of freedom of our robot, as well as all the degrees
of freedom of any objects we will interact with. Some
dimensions of our world can be directly controlled (i.e. robot
joints), where as others cannot (e.g. the position of an object).

We further provide the idea of a stance in the world as
some qualitative and discrete interaction between the robot
and objects in the world. For our planner this becomes the
question of where and if the robot grippers are attached to
another object in the world. We define a configuration to
be the combination of a stance and the current state of the
object(s) in the world. Finally we say that a state or world
state is the combination of a configuration with the current
state of the robot (or robot state). By restricting the robot to
states reachable from a configuration, we create a manifold
through our full state space, over which we are able to plan.

The main multi-step planner is run as sketched out in
Algorithm 1. It implements a breadth first search process, ex-
ploring from the start configuration to adjacent configurations
and so on. With the development of a distance metric and
a good heuristic we could use a more sophisticated discrete
search process, though it would not fundamentally change
the structure of the algorithm.

A. Adjacency

An important abstraction here is the idea of an adjacency.
Two stances are considered to be adjacent if there exists a
world state that is valid in both stances. The implementation
of this algorithm requires a way to sample world states that
are valid for both the current configuration and an adjacent
stance.

B. Reachable

The reachable function is designed to tell the discrete
search algorithm if a valid path exists from one world state
to another. To do this it has to verify that any changes in the
state are valid (i.e. objects cannot move unless the robot is
holding them), and use a continuous planner to verify that a
feasible path exists for the robot.



Algorithm 1 getPlan
Input: world states init and goal
Output: trajectory, if one exists
state queue.push back(init)
while state queue is not empty do
current← state queue.pop()
for all s ∈ adjacent(current) and not yet visited do

if s is reachable from current then
mark s as visited
state queue.push back(s)
if s is the goal stance then

trace steps backwards to construct the trajectory
and return

end if
end if

end for
end while

V. IMPLEMENTATION

The implementation of this algorithm involves resolving
a number of specific technical challenges. Some of these
are specific to the nature of the object we are working
with, others are not. The sections below will cover the
significant technical challenges and assumptions made by our
implementation.

A. The Chair

We examine the problem of a robot that folds (or unfolds)
a typical folding chair. The initial and goal states will be
specified as poses for the chair, leaving the planner to decide
where to hold the chair and how to move. We allow ourselves
full prior knowledge of the shape and kinematics of the chair,
as well as a list of available grasp points on the chair.

We perform this manipulation with the PR2 robot from
Willow Garage, as a practical matter the robot is not strong
enough to manipulate the chair arbitrarily, so we add an extra
constraint to the state of the chair that requires two legs of
the chair to be on the ground at all times, and we assume
they will not slip. In most practical configurations this will
ensure the robot does not have to support any significant
forces with its arms. In this initial implementation we have
also assumed that the pose of the chair base link (the back
of the chair) will not change.

B. Problem Specifications

We allow the algorithm to start with a complete kinematic
model of a real chair, supplied in the standard URDF format.
We also provide a list of valid grasp points on the chair.
Each grasp point is tied to a particular link on the chair,
so it will continue to be valid through manipulation actions.
Fig. 5 shows a visualization of available grasp points being
evaluated during the planning process, note that some of the
grasp points are shown for hypothetical configurations of
the chair. Grasps are shown green when a valid kinematic
solution could be found to perform a grasp, and red when
one could not be found, or because that grasp is considered
in collision.

Fig. 5. Visualization of hypothetical grasp points during planning for
different chair configurations. Grasps are shown as PR2 grippers, green for
valid, red for invalid. Note that some grasps are shown for hypothetical
chair positions.

Currently the list of grasp points passed to the algorithm
is hand specified, however it would be sensible to do this
process automatically. The running time of the algorithm, as
well as the existence and quality of a solution, can depend
heavily on how many and where grasp points are provided,
so having a principled process here would be quite useful.

The initial state of the object (chair) is observed at the
beginning of the planning process, the final state is specified
as the state of the object and robot. Currently we specify the
pose of the root link of the object to be unchanged, and only
allow the robot to move the articulated joint of the object.

C. Chair State Estimation
Perceiving the exact state of the chair is also a challenging

problem, however a general solution to that problem is
outside the scope of this work. We have attached AR Tag
style markers to the chair that can be used with a calibrated
2D camera to perceive the pose of the parts of the chair
in the frame of the robot. We used the ar pose ROS
package to perceive these tags. In ROS we treat the chair
as another robot with a URDF file, so it is necessary to
extract from multiple observed tracking tags the joint angles
of the chair. We calculate the observed rotation between two
links of the chair, then project that rotation in quaternion
space onto the constraint created by the rotational joint in
the URDF specification of the chair. Note that an axis of
rotation constraint becomes a hyperplane passing through the
origin in 4D quaternion space, so we can use standard linear
algebra techniques for this.

D. Adjacent Stance Expansion
For this robotic manipulation task stances can be defined

by the state of the robot grippers with respect to what (if
anything) they are holding and where they are holding it.
This makes it relatively easy to sample stance intersections
since they will always be characterized by a change of state
for a gripper (grabbing or releasing something).

We maintain an index of sampled world states for every
stance intersection, and by choosing an upper limit on how



many states may by sampled for a given stance intersection
we avoid the issue of oversampling an intersection if it is
revisited.

The sampled world states are maintained in a data structure
that associates each world state with the stances it is in,
and allows efficient queries of stance intersections to find all
world states in that intersection.

E. Reachability Checking

Reachability checking involves determining when a state
transition is feasible in 1 step. We have to verify three things,
kinematics, collisions, and path validity.

To check kinematics we look at the initial and final states
wherever the robot is holding an object. If the robot is
holding an object, we use inverse kinematics to verify that
a valid kinematic solution exists for the configuration of the
object in that state.

Currently we check for collision only by specifically
excluding grasp-configuration combinations that are known
to cause collisions, however it makes sense to use a more
generalized collision checker here.

Checking path validity can be done by a standard robot
arm path planner for whatever change in robot joint state is
necessary from initial to final conditions. We are currently
using joint space interpolation for unconstrained arms, but
with further work we plan to incorporate a standard collision
avoidance path planner here. Here we add some additional
constraints that the configuration of the object may not
change unless the robot is holding it with both arms on
different links (this is a constraint specific to the chair, but it
is conceptually simple to generalize to other objects, a joint
cannot be moved unless the robot is holding both the links).
When the robot does change the configuration of the object,
this creates some special constraints as a closed kinematic
chain, discussed below.

F. Closed Kinematic Chains

Solving kinematics for closed chains in general can be
difficult. We deal with this problem by prioritizing the pose
of the object. When a path must be found where the robot
changes the configuration of the object, we perform a linear
interpolation in the joint space of the object, and then solve
inverse kinematics for the robot to hold the object at points
along that path. We keep the joint states of the robot smooth
by seeding each IK solver with the solution from the previous
state.

G. Discrete Search

We currently use breadth first search for the planning
process, thus searching for a plan with a minimum of steps.
This may be a significant factor slowing down the search, and
we believe heuristic search will be able to offer significant
speed up here.

H. Path Execution

We assume that our environment is very predictable and
so after finding a solution trajectory we simply execute it
without sensor feedback.

Fig. 6. A sequence of robot states from a plan executed in the lab. The
initial state of the chair is shown in tile 1, the goal state is reached in tile
10. Observe how the robot moves the seat part way, then transitions to a
different grip (tiles 7-8) from which it is possible to finish the manipulation.

VI. EXPERIMENTS

We have been able to demonstrate this planner running
both in simulation and on the real robot, with successful
planning and execution results.

Fig. 6 shows a sequence of states while executing a
resulting plan on the real robot. The chair starts in an
unfolded state with a goal configuration to have it folded up.
The plan is executed blind and is susceptible to perception
errors in the initial state of the chair, or small miscalibrations
in the sensors, so as a result some undesired motion of the
chair is observed. Despite this the plan executes successfully
and moves the chair into a folded state. Of particular interest



should be the state where the planner has naturally discov-
ered the need to reposition the gripper part way through the
motion. This is a result of the fact that in order of fully close
the chair the robot must grasp the seat from below to avoid a
collision. However, those grasp poses are not kinematically
feasible in the unfolded state, so it is necessary to start with
different grasp, fold the chair part way, then change grasp
point.

We are currently working to better characterize the per-
formance characteristics of the algorithm, but current trials
have shown the computation time to find a 7 step solution
at about 10-15 seconds on a quad-core desktop computer.

The full video of the test can be seen here: [http://
youtu.be/cmL4UpjyMng].

VII. DISCUSSION AND FUTURE WORK

We are currently working to extend our implementation to
to other manipulation problems. It is worth noting some of
the complexity bottlenecks that exist in this technique, and
some of the ways we might address them for more complex
problems in the future.

The complexity of this algorithm (particularly when using
breadth first search) is dominated by the branching factor
of the discrete search tree. This is determined by how many
states are sampled at each stance intersection. In terms of the
chair folding problem, there are two factors at play here: how
many grasp poses we consider, and how finely we discretize
the motion of the chair joint. Both are relatively coarse in
our implementation. One can get a flavor for this by looking
at the sampled grasps in Fig. 5.

Without enough samples at a stance intersection, the
probability of getting within an acceptable distance of the
goal position may become very small. As such, a coarse dis-
cretization, particularly for more subtle manipulation tasks,
could be difficult to use. Also, as we increase the degrees
of freedom of the object, this will multiply the number of
samples necessary to achieve the same coverage of a stance
intersection, and thus multiply the branching factor of the
search tree (in nodes where the object can be moved).

We believe the solution to this problem will be switching
to a heuristic search approach. Heuristic search approaches
will not require expanding every node at a given level of
the tree before going deeper, and therefore they should
significantly reduce the sensitivity of the algorithm to the
branching factor of the discrete graph.

A reasonable extension of this work could also include
an algorithm for generating grasp points on the object. The
same branching factor issues would apply as above, but a
finer grained selection of grasp points may be necessary for
problems with tighter kinematic constraints.

A relatively easy extension would be to incorporate the
motion of the robot base. This significantly extends the
kinematic workspace of the robot, and since it doesn’t change
the branching factor mentioned above, the only cost would
be that associated with a larger continuous planning space.

A limitation of this algorithm is that once a plan is
generated it must be executed blind, without any updates

based on sensor data. This is usually how traditional motion
planners are operated, but when multi-step motion involves
interacting with objects, the system becomes less predictable.
If a robot gripper is slightly ill-positioned then a grasp may
fail, or it may succeed but move the object into an unexpected
pose. We observed this behavior in our own experiments.
Extensions to this algorithm might provide the opportunity
for replanning or adjusting plans based on new sensor data.

VIII. CONCLUSION

Combined task and motion planning problems represent
a new frontier in robotic planning tasks. They allow the
programmer to no longer be concerned with the details of
where a robot holds an object, or the order of operations
necessary for larger problems. In this paper we presented
a new approach to combined task and motion planning
problems using multi-step planning. We demonstrated the
efficacy of the approach by implementing it for a complex
manipulation problem involving an articulated object, in this
case a folding chair. Our results show that this approach is
promising and worthy of extension and further investigation.
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