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Abstract—Modern robotics research has developed a mature
family of planners for solving robot motion planning problems,
but task space problems (where we want to reason about objects)
remain difficult. Other approaches for solving what are often
referred to as combined task and motion planning problems rely
on bringing logical problem structure into the design of the high
level planner. While programming assumptions around logical
problem structure cannot be avoided, we propose the multi-
step planning approach which maintains high level generality
while pushing these logical assumptions to a lower level of the
program. Through experiments on a real robot and in simulation
we demonstrate the ability of this architecture to solve real
(though small) problems. We also demonstrate how carefully
chosen heuristics can be key to making this approach faster.

Note to Practitioners: This paper proposes techniques
for using multi-step planning to solve problems defined in
the way we would like objects to move in the space, rather
than how we would like the robot to move. Successful
applications of this technique will depend of the ability
of the practitioner to define useful families of planning
spaces, and provide algorithms that can plan and sample
states in those families. Additionally, in order to get
good performance, particularly on larger problems, the
practitioner should provide an informative heuristic that
matches the cost function used in the planning process.
Our results suggest that with good heuristics, multi-step
planning could be a practical technique for problems
with relatively small search complexity, and suggest the
potential for developing stronger heuristics to target larger
problems.

Index Terms: Planning, Manipulation, Heuristic Search,
Combined Task and Motion Planning.

I. INTRODUCTION

Robotic systems capable of dexterous manipulation are
becoming increasingly common, driven by precipitous drops
in the cost of sophisticated sensing technologies as well as
ever more powerful computers. These new sensors allow
robots to be used in unstructured settings where objects may
arrive in unknown configurations and obstacles may exist. In
order to use robots in these environments we need planning
technology capable of dealing with these unknowns to achieve
a manipulation task.

Techniques for robot motion planning have come a long way
in the last decade or so, with powerful planning algorithms
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Fig. 1: PR2 robot in the process of folding a chair.

now available essentially ‘off the shelf’ through frameworks
such as OMPL [1] and MoveIt [2]. These planners can
effectively create plans to move robot arms to almost any
position through most practical environments.

When thinking about practical robotic manipulation we are
almost always dealing with 6 or 7 degree-of-freedom robot
arms, mounted on a mobile base. These arms have complex
kinematics that make analytic solutions to collision checking
problems near impossible. Consequently, sampling-based plan-
ning algorithms are used to develop collision free trajectories.
These planning algorithms have advanced to a point where ‘off
the shelf’ algorithms exist that can produce practical, collision
free, motion plans for many arms in diverse circumstances
[1]. However, they leave something to be desired when we
think about the objectives we actually care about in robotic
manipulation problems.

When we talk about robotic manipulation, we are interested
the ability of the robot to change the state of an object in its
environment, and not so much in the state of the robot itself.
From the perspective of a motion planner, robots tend to be
well behaved, with fully actuated degrees of freedom, where
as objects themselves are more difficult to plan for. Many
effective techniques exist to develop plans for the kinematic
motion of robots, but they tend to fall short of a complete
solution when we try to develop plans for the object rather
than the robot.

Traditional robotic motion planning problems focus on the
state of the robot. A more useful (though more difficult)
problem formulation would specify goal conditions in terms of
the state of the environment. To wit, in many useful problems,
the state of the robot is not intrinsically important. If we wish
to move a bowl on a table by using a robot, we care that the
bowl gets to where we want it. Usually (as long as the robot
doesn’t get in our way or run into anything) we don’t care



where the robot goes to achieve the goal. Combined task and
motion planning refers to planning through a combination of
the task space (the state of the environment) and the motion
of the robot.

Although it may seem like a simple matter of adding
more degrees of freedom, combined task and motion planning
problems are significantly different from the problems usually
encountered in robotic motion planning. Holonomic robots
are those that are capable of instantaneously moving in any
free direction (such as a ground robot with omni-wheels, or
a robot arm in joint space). Planning is easier for holonomic
robots because it is easy to develop a local algorithm to move
the robot from one waypoint to another. Planning for non-
holonomic robots is more difficult because of restrictions in
how waypoints can be connected (requiring a more sophisti-
cated local planner).

We believe that a significant difficulty of planning in this
domain comes from the non-holonomic nature of the problem,
that is, it is not possible for the system to instantaneously move
in any direction in its configuration space. In general, motion
planners exist that can deal with non-holonomic problems
(RRTs [3] and variants are a good example), however these
sorts of planners were generally designed for a particular type
of non-holonomic problem where even if it is not possible to
move instantaneously in any direction, it is possible to get to
any goal state that is nearby in a short amount of time. For
example a differential drive robot can use a forward and back
motion to slide to the side a small distance in a relatively small
amount of time.

Put another way, these spaces have an easily computed or
well defined sense of locality. That turns out not to be the case
for manipulation problems,as the state of the objects in the
environment cannot be changed until the robot is in a proper
position to interact with them. For example, if our planner
desired a small motion of an object on a table, the actual
time to achieve that may vary widely (and be unbounded)
depending on how easily the robot can reach the object.

Some researchers in the motion planning community have
looked at the problem of planning for the state of objects
along with the robot that moves them, sometimes referring
to this problem as combined task and motion planning, or
integrated task and motion planning. Some approaches have
involved using logic based solvers [4] or pre-designed plan
outlines supplied by an expert [5]. So far the problem is still
very difficult, and without good generalized solutions.

The solution we have proposed for solving these combined
task and motion planning problems is called multi-step plan-
ning. Multi-step planning has been applied previously by other
researchers in some other domains, and we believe it is a
strong technique for robotic manipulation problems as well.
The principle behind multi-step planning is the combination of
our known, well studied robot motion planners (also referred
to in this work as continuous planners, as they operate on
a continuous space) with a discrete planning algorithm able
to choose the sequence of continuous plans that must be
executed. It relies on the ability of the programmer to do two
important things in the space: first, to find discrete points for
breaking up plans, and second, to provide continuous planners

that can generate plans at all of those discrete points. Our
system is agnostic of how the programmer chooses to meet
these constraints, but any modern kinematic motion planner
should work well, as well as more specialized planners for
specific tasks. (We discuss this process in more detail in
section IV: Algorithm.)

We start by demonstrating how to use multi-step planning to
solve the non-trivial problem of manipulating a folding chair
(work previously published in [6]). The folding chair problem
demonstrates the power of this technique on an interesting
planning problem with a relatively small search space. This
problem is in some ways easier that other multi-step problems
(only one degree of freedom outside the robot), but also
demonstrates the power of this approach by showing how it
can integrate a specialized planning algorithm in some steps
of the plan where it is necessary (two arm manipulation of
the articulated object), while also using more simple planning
algorithms when the robot is differently constrained (standard
sampling based planners for free arms).

We will then extend the technique by showing how to
improve the discrete search component of the process to
provide a significant speed up in planning time as well as
shrinking the size of the explored search tree. We evaluate the
magnitude of this speed up by running our planner on four
simulated configurations of our chair folding problem, and
collecting a variety of metrics about the planning process. Ad-
ditionally, with the increased performance of this new discrete
planner, we are able to demonstrate how this technique can
cross applications to a simple tabletop manipulation problem.
Although the tabletop problem is more common and appears
simple, it actually exhibits significantly higher combinatorial
complexity than the chair folding problem.

II. RELATED WORK

Most robot motion planning can be classified as either
dynamic (or policy based) planning, or kinematic planning.
Our work is entirely based on the kinematic planning model
in which the result of a planner is a viable trajectory through
state space that the robot is expected to follow. Kinematic
planners are not well suited for applications where the robot
must deal with large uncertainty in state transitions, and so for
that reason we have to allow the robot to move slowly so it
can stay close to its trajectory.

Our work relies on the A* search algorithm for the discrete
search component. A* was originally proposed by Hart and
Nilsson [14] and has become a standard algorithm since then.
Other heuristic search algorithms exist such as D* [15] and its
variants [16] [17], and multi-heuristic A* [18]. Examining the
properties of these algorithms applied to multi-step planning
could be a promising future area of research.

A. Continuous Space Planners

Motion planning problems for modern, high degree-of-
freedom robots, such as arms and mobile manipulators, are
most frequently solved using one of a group of sampling based
motion planning algorithms. This includes techniques such as
probabilistic road maps [7] and RRTs [3].



RRTs in particular are well suited to the well behaved non-
holonomic problems often encountered in robot navigation
(discussed earlier), and many variants have been proposed,
including RRT* [8], RRT-connect [9] and others. However,
RRTs rely on a notion of locality that works well in these well
behaved spaces (specifically, a meaningful distance metric for
finding nearest nodes), but tends to break down in manipu-
lation problems such as the type we address with multi-step
planning and other combined task and motion planners.

While RRT and its variants fundamentally look like search
processes, there are also approaches to motion planning based
on the idea of trajectory optimization, where we start with
some hypothesis trajectory and deform it according to some
cost function with techniques such as CHOMP [19] or STOMP
[20]. Cost functions can be built to incorporate the need for
collision avoidance, as well as other cost metrics.

B. Combined Task and Motion Planning
Other researchers have used a variety of techniques to

approach the combined task and motion planning problem.
Nedunuri et. al. [5] developed an approach that relied on
plan outlines supplied by an expert. Barry et. al. [21] have
demonstrated a technique that constructs plans in a hierarchical
manner, starting with object motions, then moving up to robot
motions to satisfy the object trajectory. Srivastava et. al. [4]
developed a planner based on a new interface layer between
known motion planning algorithms and known PDDL based
task planning algorithms.

In contrast to some of the above approaches, our work does
not use specialized task planners, but instead divides the world
state into qualitative classes based on the nature of the robot’s
interaction with the environment, and asks the programmer
to provide motion planners that are valid in each class of
world states. We believe our approach is more generalized
than others in the field, making very few assumptions about
the nature of the world, and instead relying on the implementer
to build the necessary constraints into the provided planners.
In a practical sense, this requirement would exist with any
attempt at combined task and motion planning, but we think it
makes sense to push it to the lowest level possible, rather than
building structural constraints into the high level algorithm.
This approach may come with a computational cost (at least
until we can develop improved heuristics), however we are
bullish on future improvements in computational power. As
an example of its versatility, our formulation allows us to
provide planners for specialized situations such as two hand
manipulations of articulated objects.

Multi-step planning has been used before in some other
specialized applications, Bretl et. al. [12] used it to plan a
path for a wall climbing robot. In their experiment a robot
climbs a wall using rock climbing holds similar to what would
be seen in a rock climbing gym. In this context the discrete
states represented the set of holds the robot is currently using
to attach to the wall, and state transitions have to account for
whether the robot can reach a new hold without falling off
the wall. Hauser et. al. [13] demonstrated an application of
machine learning to improve the efficiency of the multi-step
planner for the same robot.

The formulation developed by Siméon et. al. [22] is very
similar to our own in that they also look at the space as a
high dimensional configuration space including both objects
and the robot. They use families of ‘transit’ and ‘transfer’
paths to break up the space into subdimensional manifolds
where the robot either holds an object or it does not. These
‘transit’ and ‘transfer’ paths then form a graph that can be used
with a probabilistic roadmap (PRM) planner. In our own work
we do not distinguish algorithmically between paths where
the robot gripper is occupied or not, instead allowing the
programmer to provide whatever planners (and thus, subdi-
mensional manifolds) they choose. But, more importantly, we
use a heuristic search process, rather than a PRM, which has
different performance characteristics and guarantees.

C. Object Perception and Manipulation

Outside of simulated or highly structured environments,
any manipulation planning system relies on some form of
sensing and perception to detect the presence and position of
the objects with which to interact. Our experimental system
relies on fiducial markers and knowledge of the structure of
the object. At a practical level it can be difficult to supply
structured information about articulated objects when a CAD
model is not handy. Sturm et. al. studied ways to model and
learn the configuration of articulated objects [10]. Katz et. al.
have done similar work using a robot to interact with the scene
and detect articulated structure [11].

III. PROBLEM FORMULATION

The full planning space of the problem combines the full
pose of the robot along with the poses of all objects in the
scene. Planning in that space in a raw form would normally
be very difficult due to the high dimensionality of the space,
and the need to model state transitions that take into account
the physical interaction of objects. We simplify this space by
assuming that the scene (non-actuated degrees of freedom)
is fixed, and only moved under special circumstances. In this
case, objects in the scene only move when the robot is holding
on to them.

A limitation of this approach is that it does not directly
model the physics of objects in the world. For example, if the
robot deposits a small tabletop object into a location in free
space, the object tends to fall to the ground (Robonaut [23] will
be allowed to disagree). This can be fixed with a constraint
that objects may only be released in stable positions, but it
requires the programmer to codify these stable positions.

A. A Toy Problem

The need for this solution approach is easy to demonstrate
by a simple, 2D toy problem. Consider a robot and object in
a 1 dimensional world, such as Fig. 2. Suppose we wish to
achieve a final state as in Fig. 3. To visualize a plan we can
see the whole state space represented in 2D in Fig. 4.

We observe that since the cart is not actuated, only certain
forms of motion in the state space are possible. A plan must
either move along the diagonal line, as when the robot is



Fig. 2: Initial conditions for a 1D toy world, with a robot on
the left, and cart on the right.

Fig. 3: Final conditions for the 1D toy world.

attached to the cart, or it must move vertically under the
diagonal line, as when the robot is unattached. We note that
most easy notions of locality or distance metrics break down
in this problem as two states may be very close, if the cart is
near its goal position, but if the robot is not nearby, the actual
manipulation distance may be much larger.

For this toy problem it is easy to see how to find a solution:
travel up to the diagonal line (grab the cart), traverse the
diagonal line until vertically aligned with the goal state (move
the cart to its goal position), then move vertically down to the
goal state (release the cart and move the robot to its own goal
position). Of course, this is an ad hoc solution that would only
work for this particular problem, below we describe the multi-
step planning algorithm for finding solutions in these sorts of
spaces.

B. General Formulation

We formulate this problem as one of kinematic planning in a
high dimensional configuration space that includes all dimen-
sions of both the robot and any objects. Instead of planning
directly through the entire space, we define subdimensional
manifolds in the space that we will refer to as stances. The
key properties of a stance are that (1) we have a planner that
can plan on the manifold, and (2) we have a way to sample
states that exist at the intersection of different stances. Sets of
disjoint stances can be combined to form a planning space of
higher dimensionality. A planning space would be the set of

Fig. 4: The full 2D state space for the 1D toy world. Note that
motion is only possible along the diagonal line (robot holding
the cart) or vertically under the diagonal line (robot unattached
to the cart).

stances that all use the same planner. This might be visualized
as a stack of sheets.

An example of this could be seen in a tabletop problem with
objects A and B. The robot is holding object A and object B
is on the table. The robot is in a planning space that includes
all cases of holding and moving object A, and the specific
stance in that space is parameterized by the position of object
B on the table, and which grasp point the robot is using to
hold object A. The robot could then sample intersections with
the planning space of holding no objects by sampling places
to set down object A.

The search problem becomes one of finding the sequence of
trajectories along stance manifolds and stance transition points
that minimize the distance metric of our choice.

IV. ALGORITHM

Multi-step planning is, fundamentally, a layering of a
discrete search algorithm on top of specialized continuous
planners. We consider the full state of our world to include all
degrees of freedom of our robot, as well as all the degrees of
freedom of any objects we will interact with. Some dimensions
of our world can be directly controlled (i.e. robot joints), where
as others cannot (e.g. the position of an object).

The core of our algorithm is the getPlan function outlined in
Algorithm 1. We use the A* discrete search algorithm, with a
dynamically generated graph. A* is a well known and studied
algorithm, but when using it on the dynamically generated
graph that is essential to multi-step planning, the behavior of a
couple of important functions becomes key to its performance.
We discuss those functions below.

Algorithm 1 depends on two implementation specific
functions, reachable and heuristic, as well as
the adjacent function which is domain specific. The
heuristic function can be any admissible and consistent
heuristic for our application that also matches the cost cal-
culation for g values. In this paper we will use the number
of steps as a distance metric with the matching minSteps
heuristic outlined in Algorithm 4.

A. Reachable

The reachable function is designed to tell the discrete search
algorithm if a valid path exists from one world state to another.
To do this it has to verify that any changes in the state are valid
(i.e. objects cannot move unless the robot is holding them),
and use a continuous planner to verify that a feasible path
exists for the robot.

As we noted earlier, the multi-step planning algorithm
depends on the programmer to supply a family of planning
algorithms that can generate plans in all of the various stances
that may exist in our problem. reachable will read the
stance and then make a call to the appropriate planner to
see if the states can be connected, returning a boolean value
about the reachability of the new state, as well as (optionally,
depending on the implementation) a distance to the new state.
As a small optimization, if a valid trajectory is found then it
will be returned so it can be stored until the end of the planning
process, thus preventing the need to replan all the steps in the



Algorithm 1 getPlan

1: Input: world states init and goal
2: Output: trajectory, if one exists
3: Let state queue be a Priority Queue
4: closed set← ∅
5: state queue.insert(init)
6: while state queue is not empty do
7: current← state queue.pop()
8: closed set.insert(current)
9: if current == goal then

10: trace steps backwards to construct trajectory
11: end if
12: for all s ∈ adjacent(current)\closed set do
13: if s is reachable from current then
14: h← heuristic(s, goal)
15: g ← current.g val+ distance(current, s)
16: f ← g + h
17: if s is not in state queue then
18: insert s in state queue with priority f
19: else
20: if f < current priority for s in state queue

then
21: update s in state queue with priority f
22: end if
23: end if
24: end if
25: end for
26: end while
27: return trajectory

final multi-step plan at the memory cost of storing trajectories
for each valid edge in our search graph.

B. Adjacent

An important abstraction here is the idea of an adjacency.
Two stances are considered to be adjacent if there exists a
world state that is valid in both stances. The implementation
of this algorithm requires a way to sample world states that
are valid at the intersection of two stances.

In order to do multi-step planning we need the ability to
find stances adjacent to our current stance. For manipulation
problems we define stances by the set of grasps the robot is
using, so finding adjacent stances is a matter of looking at
each gripper and either releasing the current grasp or taking a
new one, which provides a set of adjacent stances. It is then
necessary to sample world states in the intersection of each
of those stances with our base stance. This process is detailed
in Algorithm 2. In the next section we will discuss the state
sampling process.

C. State Sampling

Algorithm 3 outlines our state sampling process. The gen-
eration of individual samples is a random, application specific
process that must be supplied by the programmer for a given
application.

Two other aspects of this function are worth noting. First
is the sampled states data structure. This is a structure that

Algorithm 2 adjacent

1: Input: world state a
2: Output: set of adjacent world states adj
3: adj ← ∅
4: adj stance← ∅
5: for g in robot grippers do
6: if g is holding object then
7: release← a.stance with g released
8: adj stance← adj stance ∪ release
9: else

10: for i in available grasp points do
11: grab← a.stance with gripper g grabbing i
12: adj stance← adj stance ∪ grab
13: end for
14: end if
15: end for
16: for stance in adj stance do
17: adj ← adj ∪ sampleStates(a.stance, stance)
18: end for
19: return adj

provides an efficient way to store all previously sampled states
along with all of the stances of which they are members.
Furthermore, it can be queried with a pair of stances to
efficiently return all already sampled states that are in both
stances. In the next section we will briefly discuss how we
implemented a data structure with these specifications.

Second, we have a parameter, sample count that tells us
how many samples to take before returning. This parameter
can have a very large effect on the running time and solution
quality of the planner. If it is set too high it will grow the
branching factor of the search tree to make it too large. If it is
set too low the planner may not be able to find a high quality,
or any, solution.

Algorithm 3 sampleStates

1: Input: stances a and b
2: Output: set of world states at the intersection of a and b
3: states← sampled states.atIntersection(a, b)
4: while states.size < sample count do
5: sample← randomly selected state in intersection of a

and b
6: states← states ∪ sample
7: sampled states.insert(sample in a and b)
8: end while
9: return states

D. State Storage and Reuse

In order to facilitate storing and retrieving world states by
stance intersection, we created a data container we call a
VennSet defined by two operations:

• insert(node, set list): Insert a node that is associated
with a list of possibly preexisting sets.

• intersect(set a, set b): Return all nodes associated with
both set a and set b.



Internally, the nodes are stored in a dynamically resizable
array (C++ std::vector in our implementataion), and sets
are stored as a mapping from from the set to an array of node
IDs for the nodes in that set (we use the C++ std::map,
which is usually implemented as a red-black tree). Thus
insert can be implemented by adding the new node to the
end of the node array, and then adding it’s ID to the end of
each array for each set it belongs to. The intersect query
is implemented then by first sorting in place the arrays of node
IDs for each set, then it is easy to linearly pass through to get
the intersection. This may be slightly expensive the first time
it is called for a given set, but by using a sorting algorithm
that runs faster with ‘mostly sorted’ data, this cost can be
minimized.

This is not the most asymptotically efficient structure possi-
ble for these queries (using hash tables for internal structures
could provide an asymptotic advantage), but we found it to be
sufficiently fast for our application.

E. Heuristic Function

Algorithm 4 lists the procedure for our proposed
minSteps heuristic. This heuristic is based on a simple
intuition that objects must move to the goal if they are not
already there, and they do not move unless the robot moves
them. As such, if an object is out of place, the state is at least
one step away from a solution. Taking this one step further
(with the inner if statement), we check if the robot is holding
the object that must move. If not then we are one extra step
from the goal as the robot must first reach to grab the object
before it can be moved.

Ultimately, this is a relatively simple heuristic, though, as
we will show in our experiments, it provides a significant
speed-up.

Algorithm 4 minSteps

1: Input: world states a and b
2: Output: a lower bound on steps to get from a to b
3: steps← 0
4: for object o in object list do
5: if a.object state[o] != b.object state[o] then
6: steps← steps+ 1
7: if robot is not holding o in a then
8: steps← steps+ 1
9: end if

10: end if
11: end for
12: return steps

F. Optimality

Since our algorithm relies on the A* search algorithm,
it is able to inherit from it the associated guarantees on
on optimal solution length for the search graph as sampled.
However, the random sampling of the search graph prevents
us from making a general optimality claim for the multi-
step planning algorithm. We mentioned earlier that tuning the

sample_count parameter can have a significant impact on
solution quality. It is potentially an area of future research to
look into ways to ramp up the intersection sampling density
until a satisfactory solution is found.

In our experiments we use step count as the measure of
solution quality. This works well for our problem since most
paths have similar execution time, and there is a significant and
constant time cost associated with taking and releasing grasp
points. Solutions for other problems might reasonably like to
choose measures of travel time, end effector travel distance,
or some other metric of plan cost. Problems with a mobile
robot in particular may benefit from different cost metrics. In
this case it would also be necessary to develop a new heuristic
specific to the cost function being used.

G. Heuristic Inflation

A common approach to accelerating a heuristic search
process is to apply an inflation factor to the heuristic. If starting
with an admissible heuristic this technique comes at the cost of
optimality, however, the sub-optimality of the final solution is
bounded by the factor used to expand the admissible heuristic.

We have experimented with using a very small inflation
factor (1.05) to prevent the search process from needlessly
expanding nodes with identical cost. It should be observed
that since we use a cost metric of number of steps, and that
cost is discrete, for problems with optimal solutions less than
20 steps, the factor 1.05 still guarantees an optimal solution.

V. SIMULATION

We have implemented the multi-step planning algorithm for
a simulated folding chair identical to the real chair used in our
earlier work [6], as well as a simulated tabletop manipulation
problem.

A. The Chair

Configuration files provide the planner with a full kinematic
model of the chair, as well as a list of all the valid grasp points
on the chair. Configuration files also provide information about
how finely to discretize the states of the chair during the
planning process. The experiments in this paper use 7 grasp
points on the back of the chair, 10 on the seat, and discretize
the joint into 5 states.

For the purposes of this planner, we assume the pose of
the back of the chair is fixed in space. This is reasonable in
some configurations, such as when the chair is resting on the
ground in such a way that robot will not need to support the
full weight of the chair while grasping it, as we demonstrated
in our earlier work. In our simulated planning problems we
are less concerned with the practical realities of such things
as gravity (though it poses interesting challenges for future
work), and so, as one can see in our Experiments sections, we
will consider the planning problem with the chair in some less
conventional configurations.



(a) config 1 (b) config 2

(c) config 3 (d) config 4

Fig. 5: Four initial configurations of the chair used for testing the multi-step planner.

B. Continuous Planners

As per the requirements of multi-step planning, we must
provide a family of continuous planners capable of generating
robot trajectories for the various stances that may exist. In this
problem there are 3 such planners. A 2 free arm planner and a
1 free arm planner account for 2 of those, and are essentially
identical except that in the 1 free arm planner the constrained
arm is held stationary. The third planner is application specific
to the closed kinematic chain formed when the robot grabs 2
links on the same object that have a joint between them, and
works by interpolating through the joint positions of the object.

C. Tabletop Problem

Our tabletop manipulation problem involves two cylindrical
objects on a table within reach of the robot that both need
to be repositioned on the table. A single grasp point (from
the top) is provided for each object, and the objects can be
placed anywhere on the table in a grid of potential poses (we
use a grid resolution of 5cm). Similar continuous planners are
provided as with the chair folding problem, except for the
closed kinematic chain which does not exist in this problem.
Visualizations of the start and goal configurations are shown
in Figures 6 and 7 respectively.

VI. FOLDING CHAIR IMPLEMENTATION



Fig. 6: Initial conditions for a 2 object tabletop manipulation
problem.

Fig. 7: Goal conditions for a 2 object tabletop manipulation
problem, both objects have been repositioned.

The implementation of this algorithm involves resolving a
number of specific technical challenges. Some of these are
specific to the nature of the object we are working with, others
are not. The sections below will cover the significant technical
challenges and assumptions made by our implementation for
the physical folding chair demonstration.

A. The Chair

We examine the problem of a robot that folds (or unfolds)
a typical folding chair. The initial and goal states will be
specified as poses for the chair, leaving the planner to decide
where to hold the chair and how to move. We allow ourselves
full prior knowledge of the shape and kinematics of the chair,
as well as a list of available grasp points on the chair.

We perform this manipulation with the PR2 robot from
Willow Garage, as a practical matter the robot is not strong
enough to manipulate the chair arbitrarily, so we add an extra
constraint to the state of the chair that requires two legs of the
chair to be on the ground at all times, and we assume they
will not slip. In most practical configurations this will ensure
the robot does not have to support any significant forces with
its arms. In this initial implementation we have also assumed
that the pose of the chair base link (the back of the chair) will
not change.

B. Problem Specifications

We allow the algorithm to start with a complete kinematic
model of a real chair, supplied in the standard URDF format.
We also provide a list of valid grasp points on the chair.
Each grasp point is tied to a particular link on the chair, so it
will continue to be valid through manipulation actions. Fig. 8
shows a visualization of available grasp points being evaluated
during the planning process, note that some of the grasp points
are shown for hypothetical configurations of the chair. Grasps
are shown green when a valid kinematic solution could be
found to perform a grasp, and red when one could not be
found, or because that grasp is considered in collision.

Currently the list of grasp points passed to the algorithm is
hand specified, however it would be sensible to do this process
automatically. The running time of the algorithm, as well as
the existence and quality of a solution, can depend heavily on
how many and where grasp points are provided, so having a
principled process here would be quite useful.

The initial state of the object (chair) is observed at the
beginning of the planning process, the final state is specified
as the state of the object and robot. Currently we specify the
pose of the root link of the object to be unchanged, and only
allow the robot to move the articulated joint of the object.

C. Chair State Estimation

Perceiving the exact state of the chair is also a challenging
problem, however a general solution to that problem is outside
the scope of this work. We have attached AR Tag style markers
to the chair that can be used with a calibrated 2D camera to
perceive the pose of the parts of the chair in the frame of
the robot. We used the ar_pose ROS package to perceive



Fig. 8: Visualization of hypothetical grasp points during plan-
ning for different chair configurations. Grasps are shown as
PR2 grippers, green for valid, red for invalid. Note that some
grasps are shown for hypothetical chair positions.

these tags. In ROS we treat the chair as another robot with a
URDF file, so it is necessary to extract from multiple observed
tracking tags the joint angles of the chair. We calculate the
observed rotation between two links of the chair, then project
that rotation in quaternion space onto the constraint created
by the rotational joint in the URDF specification of the chair.
Note that an axis of rotation constraint becomes a hyperplane
passing through the origin in 4D quaternion space, so we can
use standard linear algebra techniques for this.

D. Adjacent Stance Expansion
For this robotic manipulation task stances can be defined

by the state of the robot grippers with respect to what (if
anything) they are holding and where they are holding it. This
makes it relatively easy to sample stance intersections since
they will always be characterized by a change of state for a
gripper (grabbing or releasing something).

We maintain an index of sampled world states for every
stance intersection, and by choosing an upper limit on how
many states may by sampled for a given stance intersection
we avoid the issue of oversampling an intersection if it is
revisited.

The sampled world states are maintained in a data structure
that associates each world state with the stances it is in, and
allows efficient queries of stance intersections to find all world
states in that intersection.

E. Reachability Checking
Reachability checking involves determining when a state

transition is feasible in 1 step. We have to verify three things,
kinematics, collisions, and path validity.

To check kinematics we look at the initial and final states
wherever the robot is holding an object. If the robot is holding
an object, we use inverse kinematics to verify that a valid
kinematic solution exists for the configuration of the object in
that state.

Currently we check for collision only by specifically exclud-
ing grasp-configuration combinations that are known to cause

collisions, however it makes sense to use a more generalized
collision checker here.

Checking path validity can be done by a standard robot
arm path planner for whatever change in robot joint state is
necessary from initial to final conditions. We are currently
using joint space interpolation for unconstrained arms, but
with further work we plan to incorporate a standard collision
avoidance path planner here. Here we add some additional
constraints that the configuration of the object may not change
unless the robot is holding it with both arms on different links
(this is a constraint specific to the chair, but it is conceptually
simple to generalize to other objects, a joint cannot be moved
unless the robot is holding both the links). When the robot
does change the configuration of the object, this creates some
special constraints as a closed kinematic chain, discussed
below.

F. Closed Kinematic Chains

Solving kinematics for closed chains in general can be
difficult. We deal with this problem by prioritizing the pose
of the object. When a path must be found where the robot
changes the configuration of the object, we perform a linear
interpolation in the joint space of the object, and then solve
inverse kinematics for the robot to hold the object at points
along that path. We keep the joint states of the robot smooth
by seeding each IK solver with the solution from the previous
state.

G. Path Execution

We assume that our environment is very predictable and so
after finding a solution trajectory we simply execute it without
sensor feedback.

VII. EXPERIMENTS

We have been able to demonstrate the multi-step planning
algorithm running both in simulation and on the real robot,
with successful planning and execution results.

A. Simulated Chair

We ran the planner for four different chair configurations
and for each chair configuration we tested with 3 heuristics.
A null heuristic that always returns 0, thus producing a naive
breadth-first search, the minSteps heuristic discussed in the
Algorithm section, and the minSteps heuristic inflated by a
factor of 1.05. Fig 5 shows the four chair initial configurations
we used. The chair can be seen with a blue back, red seat, and
grey rear legs.

Table I shows the differences between the two search
processes. Each configuration-planner combo has been run 5
times, and results are shown as the average of those 5 plans;
standard deviation is shown in parentheses. All of the planning
results were run on an Intel Core i7-950 desktop with 8 GB
of ram. We evaluate the planners on 3 metrics:

• planning time: cpu time spent in the getPlan function.
• search tree nodes: total number of reachable nodes

added to the search tree.



TABLE I

null heuristic

Config Time (s) Nodes Branching Factor

1 19.37 (1.15) 497 (26) 2.16 (0.06)

2 24.02 (0.60) 968 (19) 2.11 (0.06)

3 78.45 (0.53) 1830 (15) 1.42 (0.01)

4 15.86 (0.37) 821 (15) 2.63 (0.05)

minSteps

Time (s) Nodes Branching Factor

1 4.39 (0.26) 174 (2.9) 2.84 (0.15)

2 1.96 (0.03) 111 (1.4) 18.27 (0.23)

3 28.61 (2.27) 985 (46) 1.63 (0.07)

4 2.13 (0.07) 112 (2.2) 15.89 (0.32)

minSteps with inflation

Time (s) Nodes Branching Factor

1 6.25 (0.44) 261 (20) 3.32 (0.16)

2 1.88 (0.02) 94 (0.8) 15.57 (0.13)

3 25.66 (0.67) 1010 (13) 1.98 (0.03)

4 3.53 (0.18) 308 (37) 9.29 (0.06)

Running time, search graph nodes, and branching factor for the 4 initial
configurations with the null heuristic, the minSteps heuristic, and the

minSteps heuristic with a 1.05 inflation factor. Each data point is an average
of 5 runs, with the standard deviation shown in parentheses.

• branching factor: average number of reachable succes-
sors from each expanded search node.

Table II shows the speed-up factor of both non-null heuris-
tics over the null heuristic.

B. Planning Difficulty

We can see based on the planning times and other metrics
that not all the configurations were equally difficult. Specif-
ically, 3 appears to be quite difficult, where as 2 and 4 are
easier. Qualitatively we note that configurations 1 and 3 require
solutions where the robot starts by grasping the seat of the
chair from the edge to start the motion, and then has to regrasp
from underneath to close the chair. This is due to the grasp
from underneath being kinematically impossible in the initial
conditions, but the grasp from the edge being in collision with
the chair in the final conditions. Motion of this type was also
required in the solution present in our previous work with a
real robot and chair. By contrast, configurations 2 and 4 are
able to grasp the seat from underneath in the initial conditions
and can thus solve the problem in fewer steps.

C. Speed-Up Factors

Based on the table we can see that while all configurations
got a significant speed-up from the minSteps heuristic,
some gained a lot more than others. Specifically, our ’easier’
problems (2 and 4) got a much bigger speed up than the
harder problems. We suspect this is related to the fact that
we are using a relatively simple heuristic. Intuitively, a simple
heuristic will be very effective at directing search graph
expansion in areas of the problem where decision making is

TABLE II

Speed-Up Factor

Config minSteps minSteps w/ inflation

1 4.4 3.1

2 12.3 12.8

3 2.7 3.1

4 7.4 4.5

Speed-up factor shows how many times faster the search is with each
heuristic over the null heuristic, in terms of running time.

easy, but will be less useful in areas where decision making
is hard. Under this intuition, configurations with more ’hard’
decisions to make will not be able to shed as much of their
planning time. We think this also suggests that there may
be further headroom for improvement on difficult problems
with more sophisticated heuristics. Heuristic inflation seemed
to produce inconsistent results, resulting in better runtimes in
some problems, and worse in others.

D. Branching Factors

We measure branching factor by counting the number of
times the planner successfully evaluates the reachability of
another state (about line 14 in Algorithm 1) and dividing
that by the size of the closed set when planning is complete.
Note that this is not the average number of adjacencies, as
already closed states are not counted, and neither are calls to
reachable that return false. A property of this process is
that the branching factor starts out quite large as the early
states have many reachable successors, but as states move
into the closed set the average branching factor shrinks, to the
point that if the planner terminates without finding a plan, it
will show a branching factor approaching 1 (though possibly
higher, depending on how cyclic the search graph is). This
is an interesting metric because it gives us a measure of
something related to the exponential difficulty of the problem,
as well as how much of the graph is being left unexpanded
by our heuristic.

Looking at the branching factors we notice that all config-
urations with the null heuristic have branching factors around
2, and with the minSteps heuristic configurations 1 and 3
(our ’hard’ problems) also have a branching factor around
2 (though in each case higher than their corresponding null
heuristic search), but configurations 2 and 4 have radically
higher branching factors in the 15-19 range.

We think this shows that in these simpler configurations the
minSteps heuristic has been extremely successful in cutting
out unnecessary exploration, leaving behind a large branching
factor. This also corresponds to the significant decreases in
computation time for these problems.

E. Folding Chair Physical Demonstration

The physical demonstration of the algorithm runs on a
slightly different code base from the simulation results, but
is comparable to the simulation using a null heuristic. It was
previously presented in [6].



Fig. 9: A sequence of robot states from a plan executed in the
lab. The initial state of the chair is shown in tile 1, the goal
state is reached in tile 10. Observe how the robot moves the
seat part way, then transitions to a different grip (tiles 7-8)
from which it is possible to finish the manipulation.

Fig. 9 shows a sequence of states while executing a resulting
plan on the real robot. The chair starts in an unfolded state with
a goal configuration to have it folded up. The plan is executed
blind and is susceptible to perception errors in the initial state
of the chair, or small miscalibrations in the sensors, so as a
result some undesired motion of the chair is observed. Despite
this the plan executes successfully and moves the chair into a
folded state. Of particular interest should be the state where
the planner has naturally discovered the need to reposition the
gripper part way through the motion. This is a result of the
fact that in order of fully close the chair the robot must grasp

TABLE III

Tabletop Planning Problem

Heuristic Time (s) Nodes Branching Factor

minSteps 31.56 (0.19) 1991 (5) 210 (38)

minSteps * 1.05 47.12 (0.10) 2870 (4) 161 (15)

Planning results for our 2-object tabletop planning problem. Results are
averaged over 5 runs and standard deviations shown in parentheses.

the seat from below to avoid a collision. However, those grasp
poses are not kinematically feasible in the unfolded state, so
it is necessary to start with different grasp, fold the chair part
way, then change grasp point.

The full video of the test can be seen here: [http://youtu.be/
cmL4UpjyMng].

F. Tabletop Planning

In the tabletop planning problem we do not have compar-
isons with a null heuristic since the problem is significantly
more complex. We can, however, observe some comparisons to
the chair folding problem. The planning time here is generally
significantly larger, and the branching factors are an order of
magnitude larger than any we have seen on the chair folding
problem. The large branching factors in particular suggest
that the improvement here from a useful heuristic is even
more important. Intuitively, the larger branching factor is an
expected result of the robot having more choices at each
adjacency in the tabletop problem. The chair only had one
free dimension, where as our 2 can problem has 2 dimensions
per can, greatly multiplying the available world configurations.
In our state sampler we discretized the table into a grid with
a resolution of 5cm. Finer discretizations are desirable for
completeness, however, in addition to multiplying the number
of reachable states from a given state, they also decrease the
probability of the search graph revisiting old nodes, which
further pushes up the branching factor.

VIII. DISCUSSION AND FUTURE WORK

Although we believe this multi-step planning approach is
quite powerful, there are some situations that present chal-
lenges. Without enough samples at a stance intersection, the
probability of getting within an acceptable distance of the
goal position may become very small. As such, a coarse
discretization, particularly for more subtle manipulation tasks,
could be difficult to use. Also, as we increase the degrees
of freedom of the object, this will multiply the number of
samples necessary to achieve the same coverage of a stance
intersection, and thus multiply the branching factor of the
search tree (in nodes where the object can be moved).

A limitation of this algorithm is that once a plan is generated
it must be executed blind, without any updates based on
sensor data. This is usually how traditional motion planners
are operated, but when multi-step motion involves interacting
with objects, the system becomes less predictable. If a robot
gripper is slightly ill-positioned then a grasp may fail, or it
may succeed but move the object into an unexpected pose. We
observed this behavior in our own experiments. Extensions to

http://youtu.be/cmL4UpjyMng
http://youtu.be/cmL4UpjyMng


this algorithm might provide the opportunity for replanning or
adjusting plans based on new sensor data.

A reasonable extension of this work could also include
an algorithm for generating grasp points on the object. The
same branching factor issues would apply as above, but a
finer grained selection of grasp points may be necessary for
problems with tighter kinematic constraints.

Based on our results in simulation with the ’easy’ config-
urations, we think that further development of the heuristic
search process may lead to stronger improvements with the
’hard’ configurations. One area that we think is particularly
promising in this regard is the use of the multi-heuristic
A* algorithm [18]. Because multi-heuristic A* can remain
optimal with inadmissible heuristics, this opens the door to
other forms of heuristic generation that may not be able to
guarantee admissibility. Furthermore, significant speed-ups in
the discrete search process may create opportunity for using
multi-step planning on more complex problems with more
steps or bigger dimensionality.

IX. CONCLUSION

Combined task and motion planning problems represent
a new frontier in robotic planning tasks. They allow the
programmer to no longer be concerned with the details of
where a robot holds an object, or the order of operations
necessary for larger problems. In this paper we presented a
new approach to combined task and motion planning problems
using multi-step planning. We demonstrated the efficacy of
the approach by implementing it for a complex manipulation
problem involving an articulated object, in this case a folding
chair.

In this work we have also proposed heuristic search tech-
niques as a significant development in multi-step planning,
and demonstrated the performance of this strategy with our
minSteps heuristic for our multi-step chair folding problem
as well as a new tabletop problem. Using multiple initial con-
figurations we have shown between 2.7x and 12.8x speedup in
the planning procedure, depending on the configuration. We
believe that heuristic search techniques will be very powerful
for any future implementations of multi-step planning, and we
are looking toward future work that will use these speed ups
to expand the applicability of this technique to more complex
problems.
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