
Rover-IRL: Inverse Reinforcement Learning with Soft Value Iteration
Networks for Planetary Rover Path Planning

Max Pflueger1, Ali Agha2, and Gaurav S. Sukhatme1

Abstract— Planetary rovers, such as those currently on Mars,
face difficult path planning problems, both before landing
during the mission planning stages as well as once on the
ground. In this work we present a new approach to these
planning problems based on inverse reinforcement learning
(IRL) using deep convolutional networks and value iteration
networks as important internal structures. Value iteration
networks are an approximation of the value iteration (VI)
algorithm implemented with convolutional neural networks to
make VI fully differentiable. We propose a modification to
the value iteration recurrence, referred to as the soft value
iteration network (SVIN). SVIN is designed to produce more
effective training gradients through the value iteration network.
It relies on an internal soft policy model, where the policy is
represented with a probability distribution over all possible
actions, rather than a deterministic policy that returns only the
best action. We demonstrate the effectiveness of our proposed
architecture in both a grid world dataset as well as a highly
realistic synthetic dataset generated from currently deployed
rover mission planning tools and real Mars imagery.

I. INTRODUCTION

Value iteration networks (VIN) are an approximation of
the value iteration algorithm [1], [2] that were originally
proposed by [3] as a way of incorporating a differentiable
planning component into a reinforcement learning architecture.
In this work, we apply VIN in an inverse reinforcement
learning (IRL) approach for robot path planning problems.
The architecture has two main neural network components,
the VIN itself which is an unrolling of the value iteration
recurrence to a fixed number of iterations, and the reward
network which transforms terrain and goal data into a reward
map that feeds into the VIN. An important feature of this
approach is that the learned component of the network exists
entirely within the reward network, the output of which must
be a well behaved reward function for our planning problem,
making human interpretation of the planning results relatively
easy. In this work, we restrict ourselves to 2D path planning
problems on grids that have only local neighbors. This is
a natural constraint of using convolutional neural networks
for implementing the value iteration algorithm, although one
could imagine convolutional VINs of higher dimensionality.

Although the use of a reward function in value iteration
is quite intuitive, writing down how to calculate a reward

Max Pflueger would like to acknowledge support from the ARCS
Foundation for this work.

1 Max Pflueger and Gaurav Sukhatme are in the Department of Computer
Science at the University of Southern California, Los Angeles, CA 90089
USA. {pflueger,gaurav}@usc.edu

2 Ali Agha is with the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, Pasadena, CA 91109 USA.
aliakbar.aghamohammadi@jpl.nasa.gov

Fig. 1. Test example from our Jezero Crater dataset (best viewed in color).
Top Left: Satellite map shown in grey scale, this image covers a 64m x
64m square of terrain with a pixel size of 25cm per pixel. The red star
shows the goal position. Top Right: Learned reward function: Darker colors
show low reward areas and brighter colors show high reward areas. Note the
single bright pixel at the goal position. Bottom Left: Value function: shows
calculated expected discounted reward when starting from each location.
Dark to light shows low to high reward values. Bottom Right: Satellite map
with paths: Example paths from our policy (as implied by the value function)
are shown in red, the demonstration path from the dataset is shown in yellow
(rendered under the red paths). Red paths are shown starting from 4 corners
of the map as well as the start of the yellow demo path. In this example we
see one plan trajectory that closely follows the demo, and another that takes
an alternate path around an undesirable region of terrain. The region being
avoided shows a ripple pattern that is a common feature in this dataset that
we see being avoided by both the expert planner and our learned trajectories.

function to produce the desired planning results is deceptively
difficult, as has been observed by researchers in the past [4].
Part of the difficulty comes from the need to keep the relative
costs and rewards of different types of terrain in balance with
each other. Systems that learn a reward function can side step
these manual difficulties by requiring the reward function
to perform well and allow the relative weights of different
risks to come into balance automatically. Figure 1 shows an
instance of one of these learned reward functions from our
dataset and some resulting path plans.

A. Planetary Rover Path Planning

Planetary rovers, such as those currently being operated on
Mars, face difficult navigation problems in both short and long
range planning [5]. These problems are made more difficult

Fig. 2. MSL image showing damage to the wheels from small rocks. The
rocks that cause this damage are too small to see in satellite images, but
may co-occur with certain mineral types and terrain features that can be
identified from orbit.

by tight bandwidth constraints and time lag to communicate
with Earth that operationally limit the rovers to only making
one round trip communication with Earth per sol (a sol is
a Martian day, about 24 hours 40 minutes). Existing rover
driving techniques rely mostly on imagery taken on the surface
to plan actions, however those plans can only go as far as
the rover can see.

Rovers on the ground are naturally limited in their ability
to see by variations in terrain and obstructions, as well as by
limitations of the cameras. Orbital imagery can be provided at
effectively unlimited distance, but arrives at lower resolution
than images on the ground. Although orbital imagery can
be processed to obtain certain characteristics of the terrain,
such as coarse elevation, or in some cases estimates of terrain
type, relating these characteristics to a cost function relevant
to navigation is nontrivial. In particular, many dangers to the
Mars Science Laboratory (MSL) “Curiosity" rover are too
small to be seen directly in orbital imagery (Figure 2), but it
might be possible to find terrain or mineral patterns that are
associated with dangerous surface features.

We observe that this problem possesses two important
properties: we can formulate useful algorithms for long range
planning if a suitable cost function is available, and short
range planning techniques exist (based on surface imagery)
that are both sophisticated and reliable.

In this work, we present an inverse reinforcement learning
architecture using a variant on value iteration networks we call
soft value iteration networks. This system implicitly learns to
solve navigation planning problems using training data derived
from other planners or historical rover driving data. These
navigation functions only depend on orbital data to produce
a plan, and are thus useful at ranges beyond what is visible
from the ground. Because the inverse reinforcement learning
architecture we use is structured around value iteration, it
implicitly produces useful cost functions for navigation. We
propose an architecture that allows this planning product to be
integrated with existing human expert-designed local planners
to maintain guarantees in safety critical systems.

An additional application of our technique is that as a data
driven planning technique based only on information obtained

from orbit, our planner could be used in mission planning
scenarios for tasks such as evaluating the value of a landing
site. Planners that are currently used for this purpose rely
on heuristic rules for travel cost and maps created through a
terrain labeling process.

II. RELATED WORK

Deep reinforcement learning (RL) techniques have been
frequently applied in settings where we wish to model an
action policy as a function of robot state for both discrete
and continuous action spaces [6], [7], [8]. Reinforcement
learning has also been used in challenging space applications
for hopping rovers [9] using least-squares policy iteration
[10].

Value iteration networks were first explored by [3] in
the context of reinforcement learning. They developed the
value iteration module as an approximation of the value
iteration algorithm that could be used inside a reinforcement
learning algorithm to allow the algorithm to ‘learn to plan’.
We demonstrate a different application of the value iteration
module from their work: instead of allowing it to have abstract
spatial meaning with a learned state transition model and
pass through a final policy network, we bind it tightly to
the map of our terrain and the available state transitions.
By doing this our algorithm is explicitly forced to learn the
reward function that produced the observed behavior in our
IRL formulation of the problem. This is important to us as it
allows the reward map to be interpretable in other contexts.
QMDP-net, proposed by [11], uses a planning technique
similar to VINs, but adapted for partially observable problem
settings. Other researchers have also looked at ways of using
neural networks to model dynamic programming and planning
techniques [12], [13].

IRL for navigation has been studied by other groups as well
[14], [15], [16], for example the LEARCH technique proposed
by [17] has a very similar functional input/output design,
although it relies on substantially different computational
tools. [16] and [18] combined the MaxEntIRL framework
with a deep network similar to our own for computing cost
maps. Imitation learning has also been done with deep neural
network (DNN) based policies (instead of cost functions) and
visual state information [19].

Our formulation of IRL with VINs shares a substantial
mathematical similarity with previous work in maximum
entropy inverse reinforcement learning [15], [16]. In particular,
our use of a ’soft’ action model (discussed in section
IV-E) in combination with a softmax cross-entropy loss
function makes our optimization objective very similar to
the MaxEntIRL objective. The main difference comes from
how the probabilistic action model in the maximum entropy
approach is normalized over full trajectories, where as our
soft action model is normalized over local actions. We will
discuss this comparison in more detail in subsection IV-F.

III. PRELIMINARIES

We use the problem formulation of a Markov Decision
Process M = (S,A, P,R, ρ) where ρ(s) defines the distri-

bution over initial states, and a robot in state s ∈ S must
choose an action a ∈ A, which will give reward r = R(s, a)
and proceed to state s′ with probability P (s′|s, a). We say
that a policy π(a|s) will define a policy distribution over
actions conditioned on states, and that τπ(s0, a0, s1, a1, ...)
is the distribution over trajectories created recursively when
s0 ∼ ρ(s), at ∼ π(a|st), and st+1 ∼ P (st+1|st, at).

We then define the value function V conditioned on policy
π as

V π(s) = E
s,a∼τ

[∞∑
t=0

γtR(st, at)

]
(1)

for some discount factor γ ∈ [0, 1]. Here the notation Es,a∼τ
refers to the expected value of the expression with s and
a drawn from the distribution τ . This can be rewritten
recursively as

V π(s) = E
a∼π(a|s)

[
R(s, a) + γ

∑
s′

P (s′|s, a)V π(s′)

]
(2)

We further define Qπ and rewrite the value function:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V π(s′) (3)

V π(s) = E
a∼π(a|s)

[Qπ(s, a)] (4)

We define the optimal value function V ∗(s) = maxπ V
π(s)

and a policy π∗ as an optimal policy if V π
∗
= V ∗ . The

value iteration algorithm can be used to find V ∗ through the
following iterative process:

Qn(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)Vn(s′) (5)

Vn+1(s) = max
a

Qn(s, a) (6)

It is well known that as n→∞, Vn → V ∗, and an optimal
policy π can be inferred as π∗(a|s) = 1argmaxaQ∞(s,a)(a).

IV. ALGORITHM

We develop an inverse RL problem formulation based
on using Value Iteration Networks (VIN) to backpropagate
gradients through the planning algorithm to update the reward
function. By contrast to previous work using VINs ([3]), we
require the value iteration module to operate directly on the
state space of our planning problem (rather than an inferred
state space as in [3]). Although this restricts what can be done
in the learning process (the problem must have a 2D grid
state space, and linear state transition functions), by forcing a
traditional interpretation on the value map we can use it with
any control policy that is designed to incorporate this kind
of data. In particular this includes the expert designed local
control algorithms that provide the safety guarantee necessary
for operating high value planetary rovers.

A. Architecture

The data flow of our algorithm is shown in Figure 3. We
start by stacking visual map data along with a one-hot goal
map and any other relevant data layers (such as elevation).
These pass through the network fR to produce the reward
map that feeds into the value iteration module. Also feeding
into the value iteration module are the state transition and
reward kernels, denoted here as fP .

The output from the VI module is used differently depend-
ing on whether we are currently training the algorithm or
deploying it on an operational system. During deployment
the value map from the VI module can be fed to an expert
designed local planner and used in combination with high
resolution local information to make planning decisions for
a long range goal. During training the output from the VI
module is compared with actions from a plan demonstration
(which may come either from an expert planning algorithm,
or from historical operations on a real platform), and the
difference is used to calculate a loss function.

B. Training

In general this architecture can have trainable parameters
in both fR and fP , however in our problem we fix the
transition and reward kernels fP and only train parameters
in the network fR. During training we attempt to minimize
over θ the loss function defined below as:

Lθ = −
∑
s∈Sy

∑
a∈A

y(s, a) log
expQθ(s, a)∑
i∈A expQθ(s, i)

(7)

where Sy is the set of states on the training path and y is
an indicator function for the action taken at each state on the
training path. This may be recognized as a common softmax
cross-entropy loss function, implying a probabilistic action
policy based on the softmax of Qθ over actions.

C. Plan Execution

The network is provided (as input) an orbital image of the
relevant terrain, a goal position, and optionally other data
products such as stereo elevation, surface roughness estimates,
or hyper-spectral imagery. With a forward pass through the
network we calculate the value and Q function estimates for
that terrain and goal position. The policy implied by the Q
function could be used directly, such as in a mission planning
application, or the value and/or Q functions could be used in
any other application where such estimates would be useful.

An important example is using the estimated value function
as a tool for long range planning in combination with a more
accurate or safe short range planner. A rover on the ground
has more accurate data for short range planning within its
radius of sight than is available from orbit. Within the radius
of its sight, the rover is able to use expert algorithms for
navigation, but can combine calculated path costs with value
estimates at its planning horizon to choose an appropriate plan
that considers longer range objectives. Replanning can then
happen as frequently as is allowed by on board resources.

Other
Layers

VI Module

fP
Action

Selection

Path Demonstration

diff Loss

Applications

Training

Map

Goal

fR

Parameterized by ?

Q

V
- Hybrid Local Planners
- Mission Planning Tools

Fig. 3. Information flow diagram for our architecture. Map data may consist of visual overhead images, as well as other data products such as hyperspectral
image channels, or elevation data. This is stacked with a one-hot representation of the goal to form a multi-channel image passed to the reward network
fR. The reward network is parameterized by θ, and its exact architecture may vary with the problem domain, our architecture for the JEZ dataset is
shown in Figure 10. The VI Module receives the reward map as well as the state transition model fP , and calculates the value map V and Q-function.
During training, an action selection process infers the policy from the Q-function and then compares that with the demonstrated path to get a loss value.
Applications may take advantage of V or Q, depending on their needs.

R Q

fP

V'

VI Module

K recurrence

fR
V

Value
Function

Action
Model

Q Function

Fig. 4. Value Iteration Module. The (potentially multi-channel) reward map fR is stacked with the current estimate of the value function V (typically
initialized with 0’s). The state transition model fP is delivered as the convolutional kernel that creates the next estimate of Q. Q has as many channels as
available actions. The action model then processes Q into the next estimate of V. Traditionally this is a max pooling operation, however in subsection IV-E
we discuss our proposed soft action model. This process repeats for K iterations before outputting the final estimates of V and Q.

D. Value Iteration Module

The value iteration module uses the value iteration iterative
process defined in Eqs. 5 & 6 to perform an approximation
of value iteration for a fixed number of iterations k. The
approximate nature of this module derives from the need to
choose the fixed number of iterations k a priori, instead of
iterating to convergence as required by the traditional value
iteration algorithm. A representation of the architecture of
the value iteration module is shown in Figure 4.

The two inputs fR and fP provide the reward map and
convolutional kernel respectively. The reward map is stacked
with the value map from the previous iteration and then
convolved with fP to produce a map of Q values. The
Q channels must then be collapsed into the next value
map through a model of the action selection process. Strict
adherence to the value iteration algorithm requires that this
be a max pooling operation (an optimal policy chooses the
action of maximum reward), however, in the next section we
propose an alternative approach.

E. Soft Action Policy

The traditional formulation of the value iteration algorithm
requires that updates be done using the optimal action policy
of always choosing the action of highest Q value as in Eq.
6 above. This is a theoretically well justified choice for a
planning algorithm. However, in value iteration networks we
have an additional objective to provide an effective gradient

through the algorithm. If we assume a reward function Rθ
parameterized by θ, we can calculate the gradient of the value
function with respect to θ after k iterations as:

∇θVk(s) = ∇θRθ(s, a∗) + γ
∑
s′

P (s′|s, a∗)∇θVk−1(s′)

(8)
where, a∗ is the optimal action selected by the max Q value
in iteration k − 1. Assuming a deterministic state transition
model P (as is the case for the problems studied in this
paper), this equation can be further simplified and expanded
as:
∇θVk(s) = ∇θRθ(s, a∗) + γ∇θVk−1(s′)

= ∇θRθ(s, a∗) + γ∇θRθ(s′, a′∗) + γ2∇θVk−2(s′′)
(9)

The key observation from Eq. 9 is that the gradient
through the value function will only incorporate information
about states that are reached by the best actions under
the current reward function. In this work, we propose a
modification to the value iteration algorithm that leads to
more effective gradient values, which enhances the network
training, particularly in the early training stages. Instead of
using the value update from Eq. 6, we propose the following:

Vn+1(s) =
∑
a

Qn(s, a)
exp(Qn(s, a))∑
i∈A exp(Qn(s, i))

= E
a∼πn

[Qn(s, a)]
(10)

πn(a|s) =
exp(Qn(s, a))∑
i∈A exp(Qn(s, i))

(11)

This formulation can be interpreted as performing value
iteration under the assumption of a probabilistic action
policy πn rather than an optimal action policy (in this MDP
formulation, the optimal action policy is the argmax over
actions of the Q function, which is always deterministic). In
the traditional formulation with deterministic state transitions,
the reward gradient cannot carry information about action
selections in sub-optimal successor states. However, we can
see that if we attempt to take the gradient of Eq. 10 w.r.t.
θ, we will not be able to remove the sum over actions and
corresponding successor states. As such all possible future
states and actions will (recursively) participate in the gradient.
We speculate that this action model may also be beneficial
for problems with probabilistic state transitions, although we
suspect the benefits would be less pronounced.

F. Importance of Soft Policies in IRL

Inverse reinforcement learning in general has to deal with a
problem that optimal policies are also deterministic, as we see
in the form of traditional value iteration. This is problematic
for IRL algorithms as it makes it difficult to calculate useful
gradients that can be used to update a parameterized reward
function. Our method and previous work (such as maxEnt
IRL [15], [16]) aim at solving this problem by softnening the
policies. Specifically, methods that rely on the principle of
maximum entropy tend to make the policy class probabilistic,
which then leads to a derivation of a practical gradient
calculation [15], [16]. These techniques, known as MaxEnt
IRL, define their policy as proportional to the exponential of
the expected discounted reward of full trajectories.

In our work we address this challenge from a different
perspective: Backpropagation through a VIN allows us to
calculate gradients of the deterministic optimal policy. As
discussed in previous sections, when those gradients are
not useful, we modify our policy class to be probabilistic
by making it proportional to the exponential of expected
discounted reward. In our approach, however, this stochasticity
is added over local actions. This new approach results in subtly
different normalization across trajectories. In our system,
trajectories of similar reward can receive different probability
as a result of the graph structure. In other words, while the
MaxEnt objective attempts to maximize the probability of the
“demonstrated trajectories", our model attempts to maximize
the probability of the “individual actions" in the trajectory
demonstration.

While all these soft policy strategies attempt to converge
to the same point (i.e., to a deterministic policy that matches
the demonstration), they have different reward contours
around that optimal point. The SVIN work proposed here
provides a new mathematical counterpoint for developing
useful IRL gradients, paving the way for new options for
future development.

Fig. 5. Two example maps and paths from our grid world dataset. The star
shows the goal position with one example path to that goal. The black cells
are considered impassible and example paths are calculated with a standard
search based planner.

Fig. 6. Left: An example grid world obstacle map, the red star denotes
the goal position. Middle: The corresponding reward map after training.
Reward values are shown in grey scale with dark values being low reward.
Note the slightly brighter goal position. Right: Value map produced by the
SVIN algorithm. Grey values here show the expected discounted reward for
all positions on the map. We see the shapes of the obstacles from the map,
as well as ’shadows’ cast by the obstacles across regions of the state space
made less accessible (from the goal) by their presence.

V. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed inverse reinforcement learning framework. We are
testing our algorithm with two datasets. The first is a simplistic
grid world dataset designed to show that the learning
objectives and formulation of our algorithm are realistic.
The second is a synthetic set of paths produced with actual
Mars terrain data from expert terrain traversability labelings.
All our datasets use a grid state space and a deterministic
action model with 9 available actions corresponding to 4
straight neighbors, 4 diagonal neighbors, and 1 action to stay
in place.

We track the performance of our models using two metrics,
loss and accuracy. Loss refers to the standard softmax cross-
entropy loss function described earlier in the paper. Loss
is the function that is being optimized via gradient descent.
Accuracy refers to the fraction of steps along the demonstrated
path where optimal actions predicted by our network match
the actions selected by the path data. The accuracy metric
is not differentiable and hence cannot be optimized directly,
however it is a better proxy for the useful performance of the
network than the loss metric. Therefore, we primarily track
progress in the accuracy value during training.

A. Grid World

The grid world dataset was designed to test the behavior of
our algorithm in a simplistic environment that still required
non-trivial planning behavior with significant look-ahead in
the map.

Fig. 7. Vector fields show optimal policy planning results on our grid world dataset. Learned policy actions are shown in red and the goal is denoted by a
blue star. A few green arrows (highlighted in the blue circles) show places where the demonstrated actions from the training data deviated from our learned
(red) policy. On the left we see a case where our algorithm did not perfectly predict the demonstration because of an identical length path that it took
instead. In the map on the right, we can see a different form of error where some regions do not show valid policies that converge to the goal (bottom-right
and bottom-left corners). This is an artifact of fixing the number of iterations (i.e., k) in VI. When k is too small, information about the goal location
cannot propagate to the whole map.

Fig. 8. Training curves show accuracy and loss on the test set against
gradient steps on the grid world dataset. The model in orange uses a standard
hard action model, the blue uses our proposed soft action model. Solid lines
show a moving average of the shaded raw performance. Loss is described
in Eq. 7. Accuracy is calculated as the percentage of grid cells in which
the calculated optimal action and the action shown in the demonstration
match. Though the accuracy value is more intuitive and easier to track, it
is not differentiable like the loss value which is the optimization objective
during training. Note the substantial improvement of our SVIN algorithm
over standard VIN in accuracy.

1) Details: Each map has resolution of 32x32 cells. For
each map we randomly choose start and goal positions and
compute the shortest path. The full dataset consists of 1000
maps with approximately 50 paths per map. (The number of
paths per map is approximate because occasionally a start and
goal position are chosen for which there is no valid path in the
map.) We split the grid world data by maps into 90% training
and 10% test. Figure 5 shows a couple of sample paths on
their corresponding maps from the grid world dataset.

The reward network fR we use for grid world consists of
2 convolutional layers with 1x1 kernels (spatial context is not
important for this problem). The first has 16 output channels
and relu nonlinearity; the second has a single linear output
channel.

2) Results: Figure 8 shows our training curves on the

grid world dataset. While the standard VIN algorithm with
a hard action model plateaus around 70-75% accuracy, our
SVIN algorithm is able to reach a substantially higher level
of performance on this dataset (89%).

It is also worth noting that the optimal upper performance
bound is likely less than 100% and thus our actual perfor-
mance is more than 89% of the optimal solution. There are
two reasons for this: First, the grid world environment often
contains multiple paths of identical length, and, structurally,
the network is not capable of learning tie-breaking preferences.
Additionally, the network is constrained by the choice of
hyper-parameters. In particular, k controls how far information
can propagate through the network. Our grid world network
is trained with k = 64, which is longer than most paths, but
under some conditions still may not be enough to converge
rewards across the whole map.

Figure 7 illustrates the performance of our grid world
network, as well as potential failure modes. The learned
policy is shown in red. A few green arrows show where
the training path deviates from the learned policy. In both
maps the goal position can be identified as the major point
of convergence of the vector field. The left map shows some
instances of deviations of identical length. The right map has
some distant areas of the map (bottom-right and bottom-left
corners) that show clearly incorrect behavior.

Figure 6 visualizes the behavior of a trained network. It
shows the input map on the left, the result after passing
through the reward network in the middle, and the output
value map on the right. It can be seen that SVIN correctly
identifies the goal position as the brightest square in the
reward map (middle graph). Also, in the value map (right
graph), we see how the obstacles appear to cast shadows

Fig. 9. Additional test examples from our Jezero Crater dataset, rendered in the same style as Figure 1. Left to right: satellite map, reward function, value
function, satellite map with paths, example paths from our policy are shown in red, the demonstration path from the dataset is shown in yellow (rendered
under the red paths). Row 1: Note how the trajectory instance started with the yellow demo path follows it closely at first, then deviates through a region
the demo avoided. The upper right path has started in an area of the map that did not receive sufficient reward signal from the goal, and is thus showing
undesirable behavior. Row 2 & 3: Here we see instances were the demo trajectory is simply a straight line, probably because the terrain labels were too
coarse to pick out any features here. Nonetheless, our learned model had identified some meaningful terrain variations. Particularly in row 2 we see it
steering through a smoother area to avoid a group of rocks.

through the space.

B. Jezero Crater

Jezero crater is a candidate landing site for the Mars
2020 rover, and as a part of the landing site evaluation
process detailed maps have been created of the area along
with a traversiblity tool that can produce minimum time
paths between arbitrary waypoints [20]. These traversibility
calculations are based on heuristics written by expert rover
drivers as a function of satellite-based terrain classification,
rock abundance, and slope. We used this traversibility tool
to generate a dataset of 9010 terrain tiles (each 64m square)
containing a path from this tool. Approximately 10% of the
dataset is held out as a test set.

A diagram of the reward network we used with this
dataset is shown in Figure 10. Table I lists some important
training parameters. Training on this dataset, our model
approaches 75% accuracy, as shown in Figure 11. As in
the grid world example, these accuracy numbers can be

Fig. 10. Architecture of the reward network trained for the Jezero Crater
dataset.

difficult to interpret, but to get a qualitative feel for what
that 75% looks like, we have shown a representative set of
examples of what the paths generated by our policy look like
in Figure 1 and Figure 9. Although a probabilistic action
model is used by SVIN for calculating the value function,
the paths shown here are generated using a best action policy,
so at test time the trajectories are not probabilistic. These

Fig. 11. Accuracy and loss training curves on the Jezero Crater dataset.
Solid lines show a moving average of the shaded raw performance. Loss
and accuracy are calculated here in the same way as the grid world dataset
shown above.

figures can be compared with Figure 7, except in this case
we have only rendered a collection of paths instead of the
full vector field for visual clarity. A qualitative analysis of
these results suggests that most of the time our network is
generating policies that are goal directed and make an effort
to avoid unsafe looking terrain. In some cases we have even
seen instances where the policy from our network seems
to outperform the training data (possibly due to relatively
coarse terrain label data), an observation that will receive
more scrutiny in future work.

Training Parameters
γ (discount factor) 0.98
k (VIN Iterations) 150

Optimizer Adam
Learning Rate 0.0001

Batch Size 20

TABLE I
JEZERO CRATER TRAINING

PARAMETERS

An important qualitative
observation is that even
when the shown paths are
nearly identical, there can
still be a substantial frac-
tion of states where our
policy makes a different de-
cision from the demonstra-
tion trajectory. This goes to
suggest that the accuracy
metric tracked during train-

ing can likely not be pushed all they way to 100%, and even
the approximately 75% achieved by the model shown here
may be close to the upper limit. A valuable direction for
future work may be to develop a less noisy loss metric for
training, that better represents policy similarity.

VI. DISCUSSION AND FUTURE WORK

In this paper we have demonstrated an inverse reinforce-
ment learning architecture using soft value iteration networks
(SVIN) that can be applied to path planning problems with
planetary rovers. We have analyzed how the SVIN formulation
can improve training gradients for problems with deterministic
state transition dynamics, and have seen that improvement
empirically on our gridworld dataset. We also applied our
technique to a new synthetic set of paths on real Mars
terrain, and seen how we can substantially approximate the
performance of the expert planner used to generate the data,
with some hints that it may even be possible to outperform
the training data.

As we move forward with this project we plan to look into
the viability of using reward networks trained on short paths
to produce policies on much larger maps, a capability which
would be key for mission planning and long range navigation
applications.

VII. ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions of
Bradd Carey and Sammi Lei in assisting with data preparation.
Thank you to Kyohei Otsu and his team for access to the
Mars Terrain Taversibility Tool.

REFERENCES

[1] R. Bellman, Dynamic programming. Princeton, NJ: Princeton
University Press, 1957.

[2] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995.

[3] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration
networks,” in Advances in Neural Information Processing Systems,
2016, pp. 2154–2162.

[4] J. A. Bagnell, D. Bradley, D. Silver, B. Sofman, and A. Stentz,
“Learning for autonomous navigation,” IEEE Robotics & Automation
Magazine, vol. 17, no. 2, pp. 74–84, 2010.

[5] D. Gaines, R. Anderson, G. Doran, W. Huffman, H. Justice, R. Mackey,
G. Rabideau, A. Vasavada, V. Verma, T. Estlin, et al., “Productivity
challenges for mars rover operations,” in Proceedings of 4th Workshop
on Planning and Robotics (PlanRob). London, UK, 2016, pp. 115–125.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[9] B. Hockman and M. Pavone, “Stochastic motion planning for hopping
rovers on small solar system bodies,” in Proceedings of ISRR, 2017.

[10] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of machine learning research, vol. 4, no. Dec, pp. 1107–1149, 2003.

[11] P. Karkus, D. Hsu, and W. S. Lee, “Qmdp-net: Deep learning for
planning under partial observability,” in Advances in Neural Information
Processing Systems, 2017, pp. 4697–4707.

[12] R. Ilin, R. Kozma, and P. J. Werbos, “Efficient learning in cellular
simultaneous recurrent neural networks-the case of maze navigation
problem,” in Approximate Dynamic Programming and Reinforcement
Learning, 2007. ADPRL 2007. IEEE International Symposium on.
IEEE, 2007, pp. 324–329.

[13] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley,
G. Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto, et al.,
“The predictron: End-to-end learning and planning,” arXiv preprint
arXiv:1612.08810, 2017.

[14] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstration
for autonomous navigation in complex unstructured terrain,” The
International Journal of Robotics Research, vol. 29, no. 12, pp. 1565–
1592, 2010.

[15] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago,
IL, USA, 2008, pp. 1433–1438.

[16] M. Wulfmeier, D. Z. Wang, and I. Posner, “Watch this: Scalable
cost-function learning for path planning in urban environments,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on. IEEE, 2016, pp. 2089–2095.

[17] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search:
Functional gradient techniques for imitation learning,” Autonomous
Robots, vol. 27, no. 1, pp. 25–53, 2009.

[18] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

[19] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro, et al., “A machine
learning approach to visual perception of forest trails for mobile robots,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–667,
2016.

[20] M. Ono, B. Rothrock, E. Almeida, A. Ansar, R. Otero, A. Huertas,
and M. Heverly, “Data-driven surface traversability analysis for Mars
2020 landing site selection,” in IEEE Aerospace Conference, 2016.

	Introduction
	Planetary Rover Path Planning

	Related Work
	Preliminaries
	Algorithm
	Architecture
	Training
	Plan Execution
	Value Iteration Module
	Soft Action Policy
	Importance of Soft Policies in IRL

	Experiments
	Grid World
	Details
	Results

	Jezero Crater

	Discussion and future work
	Acknowledgements
	References

